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Abstract. In this paper we consider an Ising bilayer as a chain of simple ladders, characterized
by intra-ladder and inter-ladder couplings, to study in detail the para- and ferroelectric behaviours
(also considering the electrostrictive corrections in the intra-ladder direction of the plane) for
different ratios of interaction constants and different values of electric field, by using a transfer
matrix method for the intra-ladder interactions and the MF approximation for the inter-ladder
interactions. In the particular case in which the interaction between two layers (planes) is taken
to be zero, our results reproduce entirely those obtained previously for a pseudo-one-dimensional
Ising model, which explains the experimental data well for the thermodynamic properties of 1D
ferroelectrics such as CsBOy (d-CDP).

1. Introduction

In [1, 2] we considered Ising spin ladders to study in detail the behaviour of different
thermodynamic properties related to different values of temperature, the ratio of interaction
constants and the magnetic field. These systems, like the other intermediate systems, can
help to provide further insight into the physics of 1D spin chains and 2D fiighpin
systems, both of which have shown interesting and unusual magnetic and superconducting
properties (see [3-17] and references therein). Thus, the orthorhombic compound vanadyl
pyrophosphateVO),P,0; clearly shows a ladder configuration of s@n\/‘“r ions in

its crystal lattice. Also, some years ago, many theories based upon the pseudo-one-
dimensional (1D) Ising model were applied to explain the thermodynamic properties of the
1D ferroelectrics such as CsPlO; (CDP), PbHPQ (PMP) and their deuterated analogues
d-CDP and d-PMP ([18-24] and references therein).

In the present work we use our previous results for a simple ladder (two coupled Ising
spin chains) to consider a more complicated model and concretely an Ising bilayer (a linear
chain of simple ladders), characterized by intra-ladder and inter-ladder couplings. Through
this model, which could be applied to biological lipid bilayers [25-28], we study the para-
and ferroelectric behaviours of different thermodynamic properties for different ratios of
interaction constants and different values of electric field, by using a transfer matrix method
for the intra-ladder interactions and the MF approximation for the inter-ladder interactions.
In a particular case of our model, in which the interactions between two layers (planes) are
taken to be zero, our results reproduce entirely those obtained previously for a pseudo-one-
dimensional Ising model, which explains well the experimental data for the thermodynamic
properties of 1D ferroelectrics such as Gy, (d-CDP) [24].
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2. The model and its Hamiltonian

The related low-dimensional system investigated in this work is an Ising bilayerxtwo
planes) as a chain of simple ladders, characterized by intra-ladder and inter-ladder couplings.
We denote byJ, the nearest-neighbour interaction along the long axis of the laddef, by
the nearest-neighbour interaction across the rungs of the laddeng J, are the intra-
ladder couplings) and by, the inter-ladder interaction between two nearest-neighbour spins
(or dipoles) (figure 1). The Hamiltonian of this model for nearest-neighbour interactions is

N,N
H==Y {LISP6HSPGE + 1 j)+ 5?6 HSP i + 1, ))]

i,j=1

+LISPG HSP G, j+ D+ SPa HSPG, j+ D)

N,N N,N
—J. Y SWaG HSPa, - E YISV )+ SP a6, )] (1)
i,j=1 i,j=1
where E is the electric field and® (i, j) or S@ (i, j) = £1 at site(i, j) of plane (1) or
(2), respectively. We will also consider periodic boundary conditions inxtlad y axis
directions.

A

Figure 1. A schematic presentation of an Ising spin bilayer.

Through this model we study the para- and ferroelectric behaviours of different
thermodynamic properties for different ratios of interaction constants and different values
of electric field, by using a transfer matrix method for the intra-ladder interactions and the
MF approximation for the inter-ladder interactions.

3. A ladder with two coupled Ising spin chains

In this section, following [1, 2] we consider an Ising ‘ladder’ with columns or rungs and
two coupled spin chains, referred to as 1 and 2. The ladder Hamiltonian with a stigngth-
interaction along the long (chain) axis of the ladder (or thaxis of the plane) and 4,
interaction across the rungs is given by

N
Hy=—J.) [SP6 HSPG +1, /) +S2a, )HSPa + 1, j)]
i=1
N N
—J. Y SPG, pSPa, H—EY [SVG H+SPG N Vi @)

i=1 i=1
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whereS®P (i, j) or S@ (i, j) = +1 at site(i, j) (for fixed j) for the first or second chain of
the ladder, respectively. We will also consider ladders with periodic boundary conditions
in the long-axis direction.

By developing this Hamiltonian in ‘elementary segments’ (corresponding to modified
squares) of the type

—{L[SPG HSPGE+ 1, )+ 5P6, HSP G+ 1 )] + %[S@(i, D))

+SDG +1, HSP6 +1, )]

+§[s@<z‘, D+SPa6EH+SPGE+1, )+ 5?6+ 1, )]} ®)
the partition function can be written as

Z, =) expl-H./(kgT)] = Tr(T") @

wherekp is the Boltzmann constanf; is the absolute temperature amdis the transfer
matrix.

Denotingk, = k = J,/(kgT) = 1/t (with t = kpT/J,, the reduced temperaturk) =
J./(kgT) = rk (with r = J,/J,, the ratio of interaction constant®y = E/(kyT) = ke
(with e = E/J,, the reduced field) and; = expk, y;, = exp(rk) andz; = exp(ke), the
transfer matrix,T, with 22 x 22 elements and symmetrically related to the main diagonal,
constructed following the decreasing order of bit numbers from the configuration (1111) (the
four spinsS? (i, j), SV +1, j), S@a, j) andS@(i+1, j) are ‘up’) to the configuration
(0000) (the four spins point ‘down’) is given by

2. .2 -2

XYLy 2L L X YL
-2 -1 2.-1 -1
L XL YL ALyL 95

T= 2. -1 -2 -1 -1 ®)

7L XpyLw XL VL L

-2 -1 -1 2., =2

AL VL 93 93 XpyLzy

By the usual procedure for the diagonalization of the matrix (5) we can find the largest
eigenvaluei,,.c(e, k) = A(e,k) = A. Since this maximum eigenvalue is equal to the
grand partition function per ‘elementary segment’ (or two spins), in the thermodynamic
limit (N — o0), the thermodynamic potential or the free energy per spin, in unitg of
derived as

kgT
gL = gole, k) = — 7

X

H -1 Ny __ 1
Nlinoo[(ZN) In[x(e, k)] = iln(k). (6)

Concretely, on diagonalizing this matrix, we find for the eigenvalues —2 exp(—kr)
x sinh(2k) and the others are the roots of the equation

A+ AP+ BL+C=0 7)
with

A = —2{explk(2 + r)] cosh2ke) + exp(—kr) cosh(2k)}

B = 4 sinh(2k)[exp(2kr) cosh(2k) + exp(2k) cosh(2ke)] (8)

C = —8exprk) sintP(2k) .

Following the usual route to resolve the equation of the third order, choosing the
largest eigenvalué among these solutions.{ < 0 is omitted), after the first and second
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differentiation of (7) with respect té (or ¢) we find
AR+ BA+C
"~ 3A24+ 240+ B

202381+ A) + 2V (2A'A + B') + (A"A% 4+ B"A + C")
a 312+ 2A) + B ©
whereA’, B’ andC’ andA”, B” andC” are the first and second derivativesAf B and
C, given by (8), versug (or e), respectively.

From the usual thermodynamic relations the specific heat is given by

2 92 2 " /N 2
c:co(e,k):kalnkzk[A—()L>] (10)

/

)\’// —

2 9k? 2 A A

where)’ and \” are the first and second derivatives Jofwith respect tok, respectively.

For the polarization per spip (in reduced units) and the susceptibilitywe can write
dgo 1 9 ap 1 92
de 2k de XZ9k2 T 2k ge? (1)

4. The free energy of the bilayer

Following [24] performing a Legendre transformation gytk, &), we obtain the Helmholtz

free energy for the simple Ising ladder Agk, p). If the inter-ladder interactions are treated

by an MF approximation, then the internal energy term of the average polariza:ti@;zp,2

is added to the free energy. Furthermore, if the bilayer is deformable or compressible along
the y axis, then the elastic terf %e,-jf;',-sj (which is abbreviated a%egz in units of J,)
should be added to the free energy. Thereby, we have

Jy
ok = folp. k) = 3 p?+ gesz (12)

wheree is the elastic constant, is the strain ana is the volume of a molecular unit. Based
on the assumption above, the coupling between the polarization and the strain is taken into
the inter-ladder interaction constant as the following expansion [24]:
aJ
&)~ 0+ S = 00 4V (13)
where the higher-order terms are neglected. Equilibrium valuésaofd p are determined
by two conditions:

a a
W _y W o, (14)
3 ap
Considering these conditions, we can rewrite (12) as
JO D /J)?
F(p k)= folp. k) = - p? = 20 = pt (15)
. ve

5. The main thermodynamic quantities in the absence of an external field

5.1. The Curie temperature

By means of the usual calculations we obtain various thermodynamic quantities from the
last equation (15). The molecular field, in the mean-field approximation, in reduced units
(of J,) is found to be

e =2(J\% /1) (p + 8p°) = 2qp(1+ 8p?) (16)
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whereq = J(9/J, ands = [(Jy(l)/Jx)z] (evq) is a new constant related to electrostrictive
corrections. In the absence of an external electric field the internal moleculae field|
play the role ofe in relations (5)—(11). So, by substituting (16) into (9), in the limit> 0,
we find the equation

2 exp2k.)[explker)ie. — 2 sinh(2k,)]

1= 4k,
4 312+ 24k, + B.

(17)

with A, = A(e = 0,k.), A, = A(e = 0,k.) and B, = B(e = 0,k.), to determine
the reduced Curie temperature = 1/k. as its solution. The electrostrictive correction
does not appear in this limit equation, namely it does not influence the values of the
critical temperature. Resolving this equation numerically, we studied the variation of the
critical temperature,. with respect to different values of inter-plane interactientra-
plane interactiong; (all interaction constants are considered positive). As an example,
two of these curves, giving the value of critical temperaturesrfes 1 and differenty
or for ¢ = 1 and differentr, are represented in figure 2. It is clearly visible from the
curve withr = 1 that, wheng = 0, the critical temperature is = 0; that is, there is no
longer a finite phase transition from the paraelectric phase to the ferroelectric one. In this
case, forr £ 0 andg = 0, the bilayer becomes a ladder. However, the problem of Ising
ladders is straightforward with a cross-over between a 2D high-temperature region and a
1D low-temperature region when the 2D correlation length equals the width. Since there is
no ordering at finite temperature in the 1D Ising model the absence of finite polarization is
quite normal forg = O.

In the special case in which= 0 (in the case of a plane) the equation (17) is reduced
to the simple equation exp2k.) = 2k.q, obtained before in [24].

10.00
|
o= z
17 |
Q " v.ﬁ’r-,;f7,_;7
: 2
g 6 00 | 4':55' o
_ : 0 G EOC O
| 053{;00000000000
T 400 o000l®
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Figure 2. The variation of the critical temperaturg for r = 1 (or ¢ = 1) versus the ratio of
interaction constantg (or r).
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Figure 3. (a) The variation of the spontaneous polarizatpwersus the reduced temperature
for two different casesr = 0, ¢ = 1 andr = 1, ¢ = 1, when the electrostrictive corrections
are not taken into accouri§ = 0) and an external electric field is abseat,, = 0). (b) The

p—t diagrams, near the critical temperatarein the presence of the electromechanical coupling
8 (§ =0 (curve 1), 0.25 (curve 2) and 0.5 (curve 3)), fo= 1, ¢ = 1 ande,,; = 0.

5.2. The spontaneous polarization

From the combination of equation (8), (9) and (11), where the feisl replaced bye,,,
given by (16), we obtain the self-consistent equation for the spontaneous polarization:

_ 2exp2k)[expkr)A(e, k) — 2sinh(2k)] .
P = [332(e. k) + 2A(e. ke, &) + Ble. ] ) (18)
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Figure 4. (a) The variation of the susceptibility versus the temperaturein two cases:
r=0andr =1, forqg =1,8 =0 ande,; = 0. (b) The [1/(1+ x)]-¢ diagrams for three
different values of (§ = O (curve 1), 0.25 (curve 2) and 0.5 (curve 3)), in the case of isotropic
interactions £ = ¢ = 1) ande,,; = 0.

with A(e, k) = A(en, k), the largest root of the third-order equation of the type (7).
The variation of the spontaneous polarizatigrnversus the reduced temperaturéor
two different cases, the simple isotropic plafte= 0, ¢ = 1) and the isotropic bilayer
(r =1, ¢ = 1) both with§ = 0 is represented in figure & In figure 3p) we show
the influence of§ on the spontaneous polarization near the critical point. It is evident
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Figure 5. (a) The c— diagrams for two values of the electrostrictive correction paramgeter
(8 =0 (curve 1) and 0.25 (curve 2)), in the case of the isotropic interactioasl( andg = 1)
ande,,; = 0. (b) The c— diagrams for an extreme case= 9,5 = 0, ¢.,, = 0 andg = 0.1,
0.5 and 1. The different shapes of the tail in these curves (for,) are related to the value of
te.

from figure 3p) that the slope of the polarization curves near the critical point depends
clearly on the values of the electrostrictive correctforin the special case in which= 0

equation (18) is reduced to the simple equatigi — p2)71/2 exp(—2k) = sinh(ke,,) [24].
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5.3. The susceptibility

Following the usual calculations for the susceptibilityvhen the external field,,; is taken
zero, we find

dp/de
~ 1—2q(1+38p?)(dp/de)
wheree = ¢,, + e..; With e.,, = O after differentiation. For the derivativ@p/de)|.,, = 0,
after long analytical calculations, we obtain two branches, the first on one side of the
critical temperature and the second on its other side (onerfer 7. and the other
for + > ). Their analytical expressions are not represented here. Based on these
expressions and equation (19) we have studied different variations of the susceptibility
x. In figure 4@) we have represented the variation pfversust, for the two different
cases considered in figuread( To better illustrate the influence &f on this quantity,
in the region: < 1., instead ofy we have also studied the quantity(1 + x) (equal to
the inverse of the dielectric constantfor a linear dependence of on ¢) (figure 4p)).
In the special case in which = 0, from (19) and the concrete expressions dpr/de
we reobtain the following simple expressionsg: = k[exp(—2k) — 2kq]~* for t > 1.
and x = k{1 - p)7'[p® + exp(—4k)(L — pH)] Y2 — 2kq(1 + 3pH))~* for 1 < 1
[24].

(19)

X

5.4. The specific heat

The specific heat at constant field and constant stress is given by
3 2 2 ap\?
¢ = colk, e) + 2gk>(1 4 36p“)[1 + 29(1 + 35p“) x] % (20)

with e = 2gp(1+ 8p?).

For illustration, in figure =) the c— diagrams for two values of the electrostrictive
correction paramete8 (5 = 0 and 0.25) are represented, in the case of an isotropic
interaction modelr = 1 andg = 1). Among the different cases considered for this Ising
spin bilayer, we have also studied the extreme cases in which the inter-plane interactions
are quite strong. In figure B the case in whichr = 9 is represented (whilé = 0 and
g = 0.1, 0.5 and 1). The different shapes of the tail in these curvest (forz.) can be
easily explained by considering the position of therelated to the double peak of the
specific heat for the simple Ising spin ladders [1]. In the special case in whicl®, for
t > t., the expression given by (20) is reduced to the simple formuta [k/ cosh(k)]?

[24].

6. The influence of an external field

In the presence of an external field,, we substitutee = 2gp(1 + 8p?) by e =
2qp(1+8p?) + e..;. Some of the results obtained in this case are illustrated in figae-6(
(c). In figure 6@) the variation ofp with respect tor is represented, in the presence of
an external field, for three different cases (witk= 1 andg = 1). Curve 1 withd = 0.1

and curve 2 withd = 0.5 illustrate the influence of the electrostrictive correctibifior

e.; = 0.1, while the comparison between curve 1 with, = 0.1 andé = 0.1 and curve 3
with e.,, = 0.3 ands = 0.1 illustrates the tendency of the external field to broadenpthe
diagram. In figure 6f) and €) we have represented the influence of the electrostrictive
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Figure 6. (a) The variation ofp with respect tor, in the presence of an external field, for
three different cases with=1, ¢ = 1 andé = 0.1, ¢,,; = 0.1 (curve 1);6 = 0.5, ¢,y = 0.1
(curve 2) ands = 0.1, e, = 0.3 (curve 3). b) The x— diagrams for two cases (both with
r=1 g = 1 ande,, = 0.1) with § = 0 (curve 1) andd = 0.25 (curve 2). €) The c—
diagrams for two cases (both with= 1, ¢ = 1 ande,,; = 0.1) with § = 0 (curve 1) and
8§ = 0.25 (curve 2).

corrections on ther— andc¢— diagrams, respectively, fat,,, = 0.1 ( = 1 andg = 1),
comparing the case without the electrostrictive correctiéns, 0 (curve 1), with the case
in which § = 0.25 (curve 2).
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Figure 6. Continued.

7. Conclusions

In this paper we have considered the Ising spin bilayer in order to study in detail the
behaviour of different thermodynamic quantities such as the polarization, the susceptibility
and the specific heat, related to different values of the temperature, the ratio of interaction
constants, the electromechanical coupling and the electric field. Our results are intermediate
between the results obtained entirely analytically and those obtained by using the MF
approximation. In the special case in which inter-plane or inter-layer interactions are absent,
we again find the same results as those obtained previously to explain the experimental data
for the static thermodynamic properties of CDP crystals in the para- and ferroelectric phases.
Considering the fact that there are spin pairings in the spin-ladder systems when inter-chain
couplings of the antiferromagnetic type are present, we intend to study carefully interactions
of this kind for inter-layer and intra-layer interactions.
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